doc. RNDr. Martin Kolář, Ph.D.
Konzultant programu
e‑mail: |
---|
Doktorské studium v prezenční nebo kombinované formě.
Program je možné studovat pouze jednooborově se specializací (Algebra, teorie čísel a matematická logika, Geometrie, topologie a geometrická analýza, Matematická analýza, Obecné otázky matematiky nebo Pravděpodobnost, statistika a matematické modelování).
Cílem programu je připravovat vysoce kvalitní odborníky ve vědních oborech pěstovaných v rámci Ústavu matematiky a statistiky PřF MU. Absolventi by měli být připraveni především na další vědecké působení v akademických institucích, ale také na možné uplatnění v praxi. Po skončení studia jsou absolventi, kteří chtějí pokračovat ve vědecké práci, motivováni k získání dlouhodobé zahraniční zkušenosti jako postdoktorandi.
Jednotlivé vědecké týmy Ústavu matematiky a statistiky pokrývají následující výzkumná témata, ve kterých jsou také školeni doktorandi:
Pozornost je věnována i přípravě na pedagogickou práci na vysokých školách. Studium probíhá podle individuálního studijního plánu a je zakončeno státní doktorskou zkouškou a obhajobou doktorské disertační práce. Vedle češtiny je pracovním jazykem programu také angličtina.
Praxe není povinnou součástí studia v tomto programu.
O doktorské studenty PřF MU se stará Oddělení pro doktorské studium, kvalitu, akademické záležitosti a internacionalizaci:
https://www.sci.muni.cz/student/phd
Na webové stránce oddělení najdete informace ke studiu:
ale také úřední hodiny, kontakty, aktuality, informace k rozvoji dovedností a ke stipendiím.
Podrobné informace k zahraničním stážím najdete na této webové stránce:
https://www.sci.muni.cz/student/phd/rozvoj-dovednosti/stay-abroad
Absolventi se uplatní na matematických pracovištích základního výzkumu, na vysokých školách a ve vědecko-výzkumných pracovištích AV ČR. Nejlepší absolventi jsou plně připraveni úspěšně se ucházet o místa postdoků na kvalitních univerzitách v zahraničí.
Absolventi mohou také působit jako vysokoškolští učitelé na vysokých školách technického, ekonomického a pedagogického zaměření. Absolventi aplikovaných specializací najdou uplatnění také v praxí, v institucích, kde je potřeba využití deterministických a stochastických modelů reálných procesů, kde se vytváří specializovaný statistický software a v ústavech, které jsou zaměřeny na výzkum v oblasti pravděpodobnostních a matematicko-statistických metod.
Údaje z předchozího přijímacího řízení (přihlášky 2. 1. – 15. 12. 2024)
Termín přijímací zkoušky
Pozvánka k přijímací zkoušce je uchazeči zpřístupněna nejméně 10 dní před termínem konání zkoušky skrze e-přihlášku.
Podmínky přijetí
Pro přijetí musí uchazeč celkem získat alespoň 80 bodů.
Úspěšný uchazeč je informován o přijetí v e-přihlášce a následně obdrží pozvánku k zápisu.
Kapacita programu
Kapacita daného programu není pevně stanovena, studenti jsou přijímáni na základě rozhodnutí oborové rady po posouzení jejich předpokladů ke studiu a motivace.
V rámci jednooborového studia se specializací má student možnost prohloubit si vědomosti v konkrétním zaměření daného studijního programu, specializaci si vybírá jednu. Název specializace pak bude uveden i na vysokoškolském diplomu.
The main theme is devoted to the study of abelian extensions of the field of rational numbers, possibly of an imaginary quadratic field. The attention is focused on objects related to the ideal class groups (e.g., the group of circular units, Stickelberger ideal, the group of elliptic units).
Examples of some older dissertations: https://is.muni.cz/th/mwiet/?lang=en or https://is.muni.cz/th/jbpxt/?lang=en or https://is.muni.cz/th/atke4/?lang=en
Accessible categories and their applications in algebra, model theory and homotopy theory. For example: Abstract elementary classes, Accessible model categories.
My publications: https://arxiv.org/find/grp_math/1/au:+rosicky/0/1/0/all/0/1?skip=0&query_id=8094c174213ee61e
OBJECTIVES: The research deals with connections of algebra with logic, in particular quantum, tense, and fuzzy. The basic tool are residuated posets, enriched categories, and orthogonal structures but the emphasis is also on quantales in connection with C*-algebras and noncommutative geometry. The practical part of the research is oriented to simulation and validation of value streams using formal words, trees, and categorical concepts. We study algebraic methods for aggregation of processes and their effects, in particular in a probabilistic environment.
AIM: a) For example, one of our research goals is a characterization of the basic quantum-physical model by means of automorphisms of its underlying orthogonality space.
b) The theoretical aspects of aggregation of multidimensional data, rankings, relations and strings will be developed in more detail, especially connected to practical situations. The mathematical model is designed primarily for industrial planning but could be used for a wider range of applications (bioinformatics etc.).
My publications:
https://www.muni.cz/en/people/1197-jan-paseka/publications
Enriched category theory provides one of the ways in which we can capture higher-dimensional categories. For instance, 2-categories, as studied by the Australian school, are enriched categories. Recently, the subject of (infinity,1)-categories, aka quasicategories, has been developed by Joyal and Lurie amongst others and Riehl and Verity have shown that these can also be captured using enriched category theory. There are many open questions and problems to be explored in this area, which involves a rich mixture of homotopy theory, enriched category theory and categorical universal algebra.
The modern theory of finite semigroups links universal algebra and topology with the theory of formal languages and logic in theoretical computer science. The main motivation of that research is decidability of concatenation hierarchies of regular languages. The algebraic objects in the centre of our interest are the lattice of pseudovarieties of finite ordered semigroups and the free profinite semigroups in these pseudovarieties.
FOCUS:Doctoral research project may focus on the theory of varieties of regular languages or on the theory of profinite semigroups. However, there are also other questions combining theoretical computer science and algebra, for example questions concerning computational complexity of identity checking problem for a fixed finite semigroup.
EXAMPLES of potential doctoral projects:- The equational characterizations of pseudovarieties,
- Completeness of the equational logic for psedovarieties of finite algebras,
- Concatenation hierarchies of star-free languages,
- Computational complexity of basic problems for finite semigroups.
My publications: http://www.math.muni.cz/~klima/Math/publications.html
PROJECT EXAMPLES
The project is a part of the CaLiForNIA Horizon 2020 doctoral network project and Prof. A. Rod Gover from the University of Auckland will be a co-supervisor. The aim of the project is to investigate various aspects of rigid geometric structures using Cartan connections and methods from representation theory.
The project was a part of the open call https://euraxess.ec.europa.eu/jobs/195173, and it is reserved for the winner of the relevant position DC1, Cartan connections and representation theory.
The project is a part of the CaLiForNIA Horizon 2020 doctoral network project, with co-supervisor Andrew Waldron at the University of California, Davis.
The general aim is to find new geometric techniques via Cartan geometry and tractor calculus, with initial interest in geometric control theory problems, including singularities (which could lead to understanding of the coupled ODE systems describing the normal extremals for problems involving singularities).
The project was a part of the open call https://euraxess.ec.europa.eu/jobs/195173, and it is reserved for the winner of the relevant position in DC2, Geometric Control Theory.
PROJECT EXAMPLES:
RESEARCH AREA:
Complex analysis in several variables leads naturally to geometric problems concerning boundaries of domains, and more generally real submanifolds of the complex space (so called CR manifolds). One of the main objectives is to understand symmetries of such manifolds and invariants with respect to holomorphic transformations.
PROJECT EXAMPLES:
Differential equations with argument deviations are important for applied science and arise frequently in population dynamics, epidemiology, economy (in particular, as models of capital growth) and many other fields. Models of various real dynamical phenomena are frequently described by boundary value problems for system of functional differential equations. For such equations, the theory of boundary value problems, while very important by itself, is also of much interest in relation to the study of asymptotic properties of solutions on unbounded intervals.
The objectives include the investigation of the existence and uniqueness of a solution to boundary value problems for functional differential equations and systems in R^n and more general spaces and the study of their properties.
WWW: http://www.math.cas.cz/homepage/main_page.php?id_membre=19
The research topic and supervisor needs to be approved by the Scientific Board of the Faculty of Science.
The objective is to study asymptotic and oscillation theory of differential equations and differential systems of real orders.
Before initiating the formal application process to doctoral studies, the interested candidates are required to contact the potential advisor for informal discussion.
Many phenomena in nature have oscillatory character and their mathematical models have led to the research of limit periodic, almost periodic, and asymptotically almost periodic sequences. In particular, the attention is paid to special constructions of such sequences in general metric spaces.
Concerning examples, see:
1. M. Veselý; P. Hasil. Asymptotically almost periodic solutions of limit periodic difference systems with coefficients from commutative groups. Topological Methods in Nonlinear Analysis, 2019, 54, no. 2, 515-535. ISSN 1230-3429. doi:10.12775/TMNA.2019.051. 2. M. Veselý; P. Hasil. Values of limit periodic sequences and functions. Mathematica Slovaca, 2016, 66, no. 1, 43-62. ISSN 0139-9918. doi:10.1515/ms-2015-0114. 2. M. Veselý. Construction of almost periodic sequences with given properties. Electronic Journal of Differential Equations, 2008, 2008, no. 126, 1-22. ISSN 1072-6691.
Before initiating the formal application process to doctoral studies, all interested candidates are required to contact Michal Veselý
Partial differential equations (PDE) have important applications in science and engineering. In the realm of linear theory, solutions of PDEs obey the principle of linear superposition, and in some cases, they possess explicit analytical expressions. However, the laws of the nature are not always linear, and nonlinear PDEs play an essential role in modeling these phenomena. The research objective is to bring into light and explain nonlinear phenomena stemming from nonlinear PDEs in connection with singularity theory.
Interested candidates are required to contact directly Phuoc-Tai Nguyen (via email: ptnguyen@math.muni.cz) for informal discussions before initiating the formal application process to doctoral studies.
Before initiating the formal application process to doctoral studies, the interested candidates are required to contact the potential advisor for informal discussion.
Přímkové plochy představují klasické téma s bohatou historií, zajímavými souvislostmi a slibnou budoucností. Cílem práce je shromáždit, přiblížit a rozvinout některá ze zmiňovaných hledisek. Od kandidáta se předpokládá trpělivost při studiu literatury (často starší a cizojazyčné) a tvůrčí přístup při výběru a zpracování nabytých poznatků.
PŘEDPOKLADY: Pro výzkum bude potřebná alespoň rámcová orientace v teori osobnostních typů, např. původní teorie Junga a indikátory Myersové-Briggsové (viz https://cs.wikipedia.org/wiki/Myers-Briggs_Type_Indicator) a přiměřená znalost statistických metod pro vyhodnocování šetření.
V případě zájmu kontaktujte přímo Jana Slováka na slovak@muni.cz.
Uspořádané algebraické struktury tvoří jedny z nejvíce studovaných struktur v algebře. Pozornost je věnována hlavně problematice 19. a 20. století a speciálně české matematice; nejsou však opomíjeny ani biografické a bibliografické aspekty.
Objectives: Statistical methodologies dealing with functional data are called Functional Data Analysis (FDA), where the term “functional” emphasizes the
fact that the data are functions characterizing the curves and surfaces.
Aim: The theoretical aspects of FDA will be developed in more detail,
especially connected to practical situations. Our aim is to take up these challenges by giving both theoretical and practical support for more flexible models.
Examples of potential student doctoral projects:
Výzkum bude zaměřen na teorii extrémních hodnot a její aplikace v oblasti hydrologie a aktuárské matematiky.
Cílem výzkumného zaměření je studium a vývoj vybraných mnohorozměrných statistických metod v metabolomike, např. analýza hlavních komponent a parciální metoda nejmenších čtverců, a to jak z pohledu numerické-matematického, tak z pohledu mnohorozměrných statistických vizualizací a animací. Vlastnosti těchto metod budou hodnoceny pomocí různých simulačních studií. Metody budou implementovány v jazyce R a aplikovány na reálná data z oblasti medicíny. Toto zameranie vznikolo v spolupráci s Ústavom neuroimunológie SAV, Bratislava.
Zajišťuje | Přírodovědecká fakulta | |
---|---|---|
Typ studia | doktorský | |
Forma | prezenční | ano |
kombinovaná | ano | |
distanční | ne | |
Možnosti studia | jednooborově | ne |
jednooborově se specializací | ano | |
v kombinaci s jiným programem | ne | |
Doba studia | 4 roky | |
Vyučovací jazyk | čeština | |
Oborová rada a oborové komise |
Zajímá vás obsah a podmínky studia programu Matematika a statistika? Zeptejte se přímo konzultanta programu:
Konzultant programu
e‑mail: |
---|